Generalized Bessel functions for p-radial functions
نویسنده
چکیده
Suppose that d ∈ N and p > 0. In this paper, we study the generalized Bessel functions for the surface {v ∈ Rd : |v|p = 1}, introduced by D.St.P. Richards. We derive a recurrence relation for these functions and utilize a series representation to relate them to the classical symmetric functions. These generalized Bessel functions are symmetric with respect to the action of the hyperoctahedral group Wd, which is the symmetry group of the `p unit sphere. By means of this symmetry under Wd, we further express these generalized Bessel functions in terms of Bessel functions for certain finite reflection groups. For the case in which p = 2, our representations lead to known relations for the classical Bessel functions of order d−2 2 . For the case in which p = 1, the generalized Bessel functions have been studied by Berens and Xu in the analysis of summability problems for 1-radial functions, and we show how their results may be framed within our more general context. 2000 AMS subj. class.: 33C10, 42B10, 44A15, 62H10
منابع مشابه
(DELTA,GAMMA, 2)-BESSEL LIPSCHITZ FUNCTIONS IN THE SPACE L_{2,ALPHA}(R+)
Using a generalized translation operator, we obtain a generalization of Theorem 5 in [4] for the Bessel transform for functions satisfying the (delta;gamma ; 2)-BesselLipschitz condition in L_{2;alpha}(R+).
متن کاملEstimates for the Generalized Fourier-Bessel Transform in the Space L2
Some estimates are proved for the generalized Fourier-Bessel transform in the space (L^2) (alpha,n)-index certain classes of functions characterized by the generalized continuity modulus.
متن کاملGENERALIZATION OF TITCHMARSH'S THEOREM FOR THE GENERALIZED FOURIER-BESSEL TRANSFORM
In this paper, using a generalized translation operator, we prove theestimates for the generalized Fourier-Bessel transform in the space L2 on certainclasses of functions.
متن کاملA Positive Radial Product Formula for the Dunkl Kernel
It is an open conjecture that generalized Bessel functions associated with root systems have a positive product formula for non-negative multiplicity parameters of the associated Dunkl operators. In this paper, a partial result towards this conjecture is proven, namely a positive radial product formula for the non-symmetric counterpart of the generalized Bessel function, the Dunkl kernel. Radia...
متن کاملAn analog of Titchmarsh's theorem for the Bessel transform in the space $mathrm{L}_{p,alpha}(mathbb{R}_{+})$
Using a Bessel generalized translation, we obtain an analog of Titchmarsh's theorem for the Bessel transform for functions satisfying the Lipschitz condition in the space $mathrm{L}_{p,alpha}(mathbb{R}_{+})$, where $alpha>-frac{1}{2}$ and $1
متن کامل